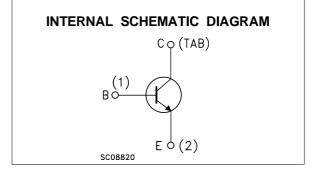

BUR51


HIGH CURRENT NPN SILICON TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR

DESCRIPTION

The BUR51 is a silicon Multiepitaxial Planar NPN transistor in modified Jedec TO-3 metal case, intented for use in switching and linear applications in military and industrial equipment.

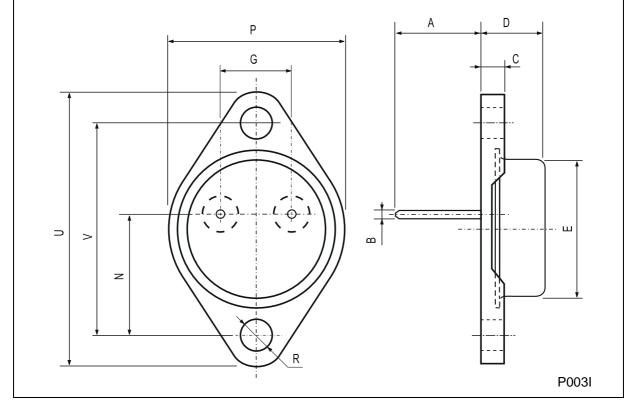
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcbo	Collector-Base Voltage $(I_E = 0)$	300	V
V _{CEO}	Collector-Emitter Voltage $(I_B = 0)$	200	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$)	10	V
lc	Collector Current	60	A
Ісм	Collector Peak Current (t _p = 10 ms)	80	A
IB	Base Current	16	A
P _{tot}	Total Dissipation at $T_c \le 25$ °C	350	W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	200	°C

February 2003

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case	Max	0.5	°C/W
--	-----	-----	------


ELECTRICAL CHARACTERISTICS (T_{case} = 25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Test C	Min.	Тур.	Max.	Unit	
I _{СВО}	Collector Cut-off Current (I _E = 0)	V _{CB} = 300 V V _{CB} = 300 V	T _c = 125 ^o C			0.2 2	mA mA
I _{CEO}	Collector Cut-off Current ($I_B = 0$)	V _{CE} =200 V				1	mA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 7 V				0.2	μA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 200 mA		200			V
V _{EBO}	Emitter-base Voltage (I _C = 0)	I _E = 10 mA		10			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 30 A I _C = 50 A	I _B = 2 A I _B = 5 A		0.9	1 1.5	V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	I _C = 30 A I _C = 50 A	I _B = 2 A I _B = 5 A		1.55	1.8 2	V V
h _{FE} *	DC Current Gain	$I_{C} = 5 A$ $I_{C} = 50 A$	$V_{CE} = 4 V$ $V_{CE} = 4 V$	20 15		100	
I _{s/b}	Second Breakdown Collector Current	V _{CE} = 20 V	t = 1 s	17.5			A
f⊤	Transition-Frequency	$I_{C} = 1 A$ f = 1 MHz	$V_{CE} = 5 V$	10	16		MHz
ton	Turn-on Time	I _C = 50 A V _{CC} = 100 V	$I_{B1} = 5 A$		0.35	1	μs
t _s t _f	Storage Time Fall Time	I _C = 50 A I _{B2} = -5 A	I _{B1} = 5 A V _{CC} = 100 V		0.9 0.24	2 0.6	μs μs
	Clamped E _{s/b} Collector Current	$V_{clamp} = 200 V$	L = 500 μH	50			A

* Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11	11.7	13.1	0.433	0.461	0.516
В	1.45	1.5	1.6	0.057	0.059	0.063
С	2.7		2.92	0.106		0.115
D	8.9		9.4	0.350		0.370
E	19		20	0.748		0.787
G	10.7	10.9	11.1	0.421	0.429	0.437
Ν	16.5	16.9	17.2	0.650	0.665	0.677
Р	25		26	0.984		1.024
R	3.88		4.2	0.153		0.165
U	38.5		39.3	1.516		1.547
V	30	30.14	30.3	1.181	1.187	1.193

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

